Association Between Choroidal Thickness and Glycaemic Control in Type 2 Diabetes Without Retinopathy

Aneeqa Naz¹, Intisar Ul Haq Rana¹, Asfandyar Asghar¹, Tehmina Nazir¹, Naila Obaid¹, Ayesha Majeed¹

Abstract:

Objectives: To evaluate choroidal thickness in patients with type 2 diabetes without retinopathy, comparing it to nondiabetic individuals and investigating the relationship between choroidal thickness and HbA1c levels.

Methods: A prospective, cross-sectional analytical study was conducted at the ophthalmology department of Fauji Foundation Hospital, Rawalpindi. The study included 110 diabetic patients without retinopathy and 55 age- and sex-matched nondiabetic controls. Choroidal thickness was measured at five locations (subfoveal, 1500 μ m and 3000 μ m nasal, and 1500 μ m and 3000 μ m temporal) using spectral domain-optical coherence tomography (SD-OCT). Subfoveal choroidal thickness at 1500 μ m nasal, 3000 μ m nasal, followed by 1500 μ m temporal, and 3000 μ m temporal, followed by central macular thickness, was taken. Correlation analysis between HbA1c levels and choroidal thickness in diabetics was performed using SPSS version 24.

Results: Diabetic participants demonstrated significantly reduced choroidal thickness in subfoveal and nasal regions compared to nondiabetics (p < 0.01). No significant difference was found in temporal regions or central macular thickness. A strong negative correlation was observed between HbA1c levels and choroidal thickness (R = -0.783), whereas disease duration showed minimal association (R < 0.1).

Conclusion: The findings suggest that elevated HbA1c levels adversely impact choroidal thickness in diabetics, even in the absence of diabetic retinopathy. This highlights the potential role of choroidal alterations in the early stages of diabetic ocular changes. Further longitudinal studies are warranted to explore the prognostic significance of choroidal thickness in diabetic retinopathy progression. *Al-Shifa Journal of Ophthalmology* 2025; 21(3): 184-191. © *Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan*.

1. Ophthalmology Department Fauji Foundation hospital, Rawalpindi.

Originally Received: 05 March 2025

Revised: 02 April 2025 Accepted: 3 June 2025

Correspondence to:

Aneeqa Naz Ophthalmology Department Fauji Foundation hospital, Rawalpindi. draneeqanaz@gmail.com

Introduction:

Diabetes is the leading cause of visual impairment in middle age individuals and is also a major cause of diabetic retinopathy (DR) 1, 2. AS reported in literaure, the diabetic retinopathy (DR) is caused by the destruction of the blood-retinal barrier due to disruption in the structure of the retinal vascular wall ^{3,4}. The choroid being a five layered structure is located between the retina and sclera; its inner layer has abundant interstices for the metabolism of the retina. Situated between the retina and sclera, the choroid comprises five discrete structural layers; the innermost of these layers is extensively fenestrated, facilitating metabolic exchange with the

retina. Choroidal lobular capillaries expand into a fan-shaped network, interlinking to modulate the hydraulic resistance and regulate blood flow within discrete lobules, thereby safeguarding overall oxygenation. 5. It ultimately nourishes the outer retina, the layer of retinal pigment epithelium, and the photoreceptor cells. While the pathogenesis of DR is still not fully explained, studies with a possible role of choroidal alteration in the presence and progression of DR are available in the literature ⁶. Abnormalities documented in choroid of diabetic patients include delayed vascular filling and photodynamic of choroidal perfusion reduction ⁸, and diminished flow structural malformations such as luminal narrowing, choroidal aneurysms, neovascular membranes and regions of capillary nonperfusion. Choroid has been evaluated utilizing various modalities, e.g., indocyanine green angiography, laser Doppler flowmetry, and ultrasonography. utility of optical coherence tomography (OCT) has facilitated as a noninvasive mode of evaluating posterior segment of eye. ⁹Particularly, the addition of enhanced depth imaging (EDI) to OCT Heidelberg (Spectralis Engineering, Germany (SD-OCT) has made it possible to obtain high-resolution images of the retina and choroid ^{10,} 11. Evaluating the choroid is challenging because of a wide range of influencing factors responsible for varying information pertinent to the choroid in various diseases ¹². Choroidal thickness otherwise has prognostic significance for diagnosis and follow-up of various retinal and choroidal diseases ¹³.

In diabetes, chronically raised HbA1c levels are well known to influence ocular health, while some evidence also suggests

that short-term spikes in blood glucose can choroid. 14,15 affect the The reported changes in choroidal thickness among diabetic patients remain inconsistent, largely because this parameter is influenced by a variety of systemic and local determinants. 16,17 These include patient age, fluctuations during the day, axial length, refractive status, intraocular pressure, and ocular perfusion pressure. Previous intraocular treatments—such as corticosteroid anti-VEGF therapy, injections, or laser procedures—may also alter choroidal measurements. In the diabetic population, factors like fasting glucose levels, long-term glycaemic control, and associated kidney disease have been linked to such alterations.

The purpose of the present study was to compare choroidal thickness in individuals with type 2 diabetes but without retinopathy to that of non-diabetic controls, using enhanced depth imaging spectral domain OCT (EDI SD-OCT) ¹⁸ Within the diabetic cohort, we further explored how choroidal thickness correlates with HbA1c levels. Establishing such a baseline may provide a reliable reference point for future work on proliferative and non-proliferative diabetic retinopathy.

Methodology:

This prospective, cross-sectional analytical study was conducted in the Department of Ophthalmology at Fauji Foundation Hospital (FFH), Rawalpindi, over a period of six months following ethical clearance (approval letter no. 842/RC/FFH/RWP, dated 01 January 2024). Written informed consent was obtained from all participants prior to enrolment.

The required sample size was estimated using the WHO sample size calculator, based on a 5% significance level, 90%

study power, and an expected mean central choroidal thickness of $247.8 \pm 39.74 \, \mu m$ in diabetic patients. ¹⁹ This yielded a minimum of 109 diabetic participants. For comparison, a control group was recruited in a 2:1 ratio, comprising 55 non-diabetic volunteers from the refractive clinic.

A non-probability purposive sampling approach was adopted. Diabetic participants were included if they were between 18 and 70 years of age, had type 2 diabetes mellitus confirmed by a physician (HbA1c > 6.5% or fasting plasma glucose > 126 mg/dl), and met other eligibility criteria. Controls were recruited from the general ophthalmology clinic, provided they were ≥ 18 years old with no clinical diagnosis of diabetes. Patients were excluded if they had diabetic retinopathy (DR), diabetic macular edema (DME), a history of intraocular surgery (including cataract), intraocular injections (steroids or anti-VEGF), or laser photocoagulation. also applied **Exclusion** to pregnancy/puerperium, significant media opacities compromising OCT quality, refractive error >5 dioptres, or axial length >25 mm. Non-diabetic candidates with HbA1c values >6.5% were reclassified into the diabetic cohort.

Diabetic participants were referred from medical OPDs for DR screening, while non-diabetic controls were enrolled from the refractive clinic. One eye was randomly selected per individual. After initial screening, each participant underwent a detailed assessment including history, visual acuity testing, slit-lamp examination, tonometry, indirect ophthalmoscopy, and dilated fundus evaluation. Best-corrected visual acuity (BCVA) was determined using Snellen's chart. Intraocular pressure was measured with Goldman's applanation tonometer before pharmacological dilation,

after which the fundus was examined with a Volk 90D lens.

Participants were scheduled the following morning for fasting blood sugar and HbA1c testing, along with blood pressure measurement. Mean arterial pressure (MAP) was derived using the formula:

MAP=Diastolic+1/3(Systolic-Diastolic).

Patients continued their routine medications but were advised to avoid sugar-rich before drinks testing. Choroidal imaging was performed with the SOCT Copernicus REVO80® SD-OCT system (Optopol Technology, version 10.0.1, Poland; 840 nm diode source, 12 µm transverse resolution, 5 µm axial resolution, 80,000 A-scans/sec), using enhanced depth imaging (EDI) mode. All scans were obtained by the principal investigator (Naz A) and verified by a senior ophthalmologist (Intesar Ul Haq R). Examinations were scheduled between 12 pm and 2 pm to minimize diurnal variations. Choroidal thickness was measured from hyperreflective outer border of the retinal pigment epithelium to the hyporeflective sclero-choroidal junction at the subfoveal region.20 Additional measurements were taken at 1500 µm and 3000 µm nasal and temporal to the fovea, as well as central macular thickness. No post-procedural interventions were required.

Data analysis was performed using IBM SPSS Statistics for Mac (version 24.0; IBM Corp., Armonk, NY). Descriptive statistics were reported as mean ± standard deviation or interquartile ranges (with minimum and maximum values) for quantitative variables, and frequencies with percentages for categorical data. Independent sample t-tests compared mean choroidal thickness between diabetic and non-diabetic groups. Within the diabetic cohort, associations with HbA1c and disease duration were

examined. Pearson's correlation coefficient was applied for correlation analysis, with statistical significance set at p < 0.05

Results:

A total of 165 patients were included in the study, 110 being diabetics and 55 non

diabetic from the refractive clinic. The Mean Age was 48.24 ± 22.22 years, with a sex ratio being 1 male to 2.48 females. Mean IOP was 13.65 mm Hg \pm 4.65. The demographics for the sample population are explained below in Table 1.

Table 1: Demographics of patients and group wise comparison between and diabetics and non-diabetics (n=165)

$\frac{audencs}{n-100}$					
S. No	Characteristics	Total	Diabetic	Nondiabetic	P value*
1.	No of cases (n)	165	110	55	-
2.	Age Mean (+ SD)	48.24±22.22	47.36±1.52	50.12±1.61	-
3.	Sex (M:F)	1: 2.48	-	-	-
4.	HbA1C (Mean)	6.64 ± 1.13	7.3±0.76	5.34±0.32	-
5.	IOP	13.65±4.65	-	-	-
6.	Mean arterial pressure	83.00±12.11	-	-	-
7.	Choroidal thickness Nasal 1500 um	245.06±16.0 7	233.90±3.22	267.40±1.36	0.001*
8.	Choroidal thickness Nasal 3000 um	236.73±11.5 3	228.70±2.01	252.80±1.17	0.004*
9.	Choroidal thickness Temporal 1500 µm	245.73±15.1 8	235.10±1.92	267.00±1.42	0.094*
10.	Choroidal thickness Temporal 3000 um	250.93±13.9 8	241.10±0.94	270.60±1.02	0.136*
11.	Central choroidal thickness (Sub foveal)	252.86±10.2 8	245.70±1.42	267.20±1.84	0.001*
12.	Central macular thickness	248.20±4.33	251.10±1.52	242.40±1.02	0.631*

 $SD=Standard\ deviation,\ IOP=Intraocular\ pressures,\ HbA1C=\ Glycosylated\ hemoglobin$ *Independent sample t-test

The mean sub foveal central choroidal thickness, choroidal thickness at nasal 1500 and nasal 3000 were statistically significant in diabetic vs non diabetic group (p value=0.001) whereas the temporal 1500, (p value=0.094) temporal 3000(p

value=0.136) and macular thickness (p value=0.631) were not found statistically significant between two groups. The detailed values are depicted as in table 1. There was negative correlation found between HbA1C levels and mean choroidal

thickness. (R= -0.783) as shown in table 2. This suggested that higher HbA1c values are associated with thinner choroidal layers. Diabetic individuals showed significantly reduced choroidal thickness in central and

nasal regions, which might indicate microvascular changes. HbA1c levels strongly correlate with choroidal thinning, highlighting the potential impact of glycemic control on ocular health.

Table 2: Association of mean choroidal thickness and HbA1C and disease duration

S. No			Pearson's corelation coefficient
1.	Mean Choroidal	Mean HbA1C	R= - 0.783
2.	Thickness	Disease duration	R=<0.1

Discussion:

This study explored the association between choroidal thickness and HbA1c levels in individuals with type 2 diabetes. When compared with non-diabetic controls, our findings suggest that higher HbA1c levels are linked with reduced choroidal thickness, indicating a possible detrimental impact of chronic hyperglycemia on choroidal structure.

Previous research on diabetic patients without retinopathy has produced mixed results. For example, Esmaeelpour et al.21, Querques et al.22, and Vujosevic et al.23 each reported variable changes in choroidal thickness, although these investigations were limited by relatively small sample sizes. In our cohort, choroidal thickness consistently reduced across was measured quadrants in the diabetic group compared to controls. This may reflect early structural alterations sometimes referred to as "diabetic choroidopathy" occurring before clinical evidence of retinopathy becomes apparent.

Lee et al.²⁴ assessed choroidal thickness in 203 diabetic eyes and 48 non-diabetic eyes, reporting no significant difference between diabetic patients without DR and healthy individuals. In contrast, Sudhalkar et al.²⁵ observed thinner choroids in diabetics (with or without DR) relative to controls, with progressive thinning noted from non-proliferative to proliferative stages of DR. Supporting the idea of early involvement, another study²⁶ also documented thinner choroid in diabetics without retinopathy compared with non-diabetic controls.

We found a negative correlation between HbA1C and choroidal thickness. This contrasts with findings from Yazgan et al.27, who reported no such relationship when examining both macular and peripheral choroid using EDI-OCT, and even observed thicker choroids in diabetics compared to controls. Similarly, Shiba et al.28 suggested that rising HbA1c might be associated with increased choroidal potentially thickness, reflecting hyperglycemia-induced vascular wall stress. The relationship between DR severity and choroidal thickness was not addressed in the present study, though prior work²⁹ has shown inconsistent patterns of change with disease progression.

Multiple systemic and ocular factors are known to influence choroidal thickness³⁰, ³¹. We attempted to minimize measurement variability by applying strict exclusion criteria, yet several limitations remain. This was a cross-sectional study, and examiners participants' were aware of group allocation, which could introduce observer bias. Additionally, the relative inexperience of the grader and incomplete control for potential confounders may have affected results. Future longitudinal studies with larger sample sizes, masked evaluation, and inclusion of patients across different DR stages would provide more a comprehensive understanding of how HbA1c levels influence choroidal morphology.

Conclusion:

The study concluded that elevated HbA1c levels adversely impact choroidal thickness in diabetics, even in the absence of diabetic retinopathy. Higher HbA1c values are associated with thinner choroidal layers. This highlights the potential role of choroidal alterations in the early stages of diabetic ocular changes even without retinopathy. Further longitudinal studies are warranted to explore the prognostic significance of choroidal thickness in diabetic retinopathy progression.

References:

- 1. Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S, Taylor HR; Vision Loss Expert Group of the Global Burden of Disease Study. Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis From 1990 to 2010. Diabetes Care. 2016 Sep;39(9):1643-9. doi: 10.2337/dc15-2171. Erratum in: Diabetes Care. 2016 Nov;39(11):2096. doi: 10.2337/dc16-er11. PMID: 27555623.
- 2. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, Wong IY, Ting DSW, Tan GSW, Jonas JB, Sabanayagam C, Wong TY, Cheng CY. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021 Nov;128(11):1580-1591. doi: 10.1016/j.ophtha.2021.04.027. Epub 2021 May 1. PMID: 33940045.
- 3. Tavares Ferreira J, Vicente A, Proença R, Santos BO, Cunha JP, Alves M, Papoila AL, Abegão Pinto L. **THICKNESS CHOROIDAL** IN DIABETIC PATIENTS WITHOUT DIABETIC RETINOPATHY. Retina. doi: 2018 Apr;38(4):795-804. 10.1097/IAE.0000000000001582. PMID: 28267113.

- 4. Jampol LM, Glassman AR, Sun J. Evaluation and Care of Patients with Diabetic Retinopathy. N Engl J Med. 2020 Apr 23;382(17):1629-1637. doi: 10.1056/NEJMra1909637. PMID: 32320570.
- 5. Linsenmeier RA, Padnick-Silver L. Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci. 2000 Sep;41(10):3117-23. PMID: 10967072.
- 6. Campos A, Campos EJ, Martins J, Ambrósio AF, Silva R. Viewing the choroid: where we stand, challenges contradictions in diabetic retinopathy and diabetic macular oedema. Acta Ophthalmol. 2017 Aug:95(5):446-459. doi: 10.1111/aos.13210. Epub 2016 Aug 22. PMID: 27545332.
- 7. Shiragami C, Shiraga F, Matsuo T, Tsuchida Y, Ohtsuki H. Risk factors for diabetic choroidopathy in patients with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2002 Jun;240(6):436-42. doi: 10.1007/s00417-002-0451-5. Epub 2002 Apr 16. PMID: 12107509.
- 8. Schocket LS, Brucker AJ, Niknam RM, Grunwald JE, DuPont J, Brucker AJ. Foveolar choroidal hemodynamics in proliferative diabetic retinopathy. Int Ophthalmol. 2004 Mar;25(2):89-94. doi:
 - 10.1023/b:inte.0000031744.93778.60. PMID: 15290887.
- 9. Xie R, Qiu B, Chhablani J, Zhang X. Evaluation of Choroidal Thickness Using Optical Coherent Tomography: A Review. Front Med (Lausanne). 2021 Dec 3;8:783519. doi: 10.3389/fmed.2021.783519. PMID: 34926529; PMCID: PMC8677938.
- 10. Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X, Kutsyr O, Albertos-Arranz H, Fernández-Sánchez L, Martínez-Gil N, Noailles A, López-Garrido JA, López-Gálvez M, Lax P, Maneu V, Pinilla I. Interpretation of OCT and OCTA images from a histological approach:

- Clinical and experimental implications. Prog Retin Eye Res. 2020 Jul;77:100828. doi: 10.1016/j.preteyeres.2019.100828. Epub 2020 Jan 3. PMID: 31911236.
- 11. Sun G, Chen C, Jiang J, Yi Z, Wang X, Miao Q, Xu A, He L. NEW INSIGHTS INTO THE ASSOCIATION BETWEEN CHOROIDAL VESSELS AND CHORIOCAPILLARIS IN NORMAL EYES. Retina. 2021 Dec 1;41(12):2612-2619. doi: 10.1097/IAE.00000000000003238. PMID: 34173364.
- 12. Endo H, Kase S, Saito M, Yokoi M, Takahashi M, Ishida S, Kase M. Choroidal Thickness in Diabetic Patients Without Diabetic Retinopathy: A Meta-analysis. Am J Ophthalmol. 2020 Oct;218:68-77. doi: 10.1016/j.ajo.2020.05.036. Epub 2020 Jun 20. PMID: 32574782.
- 13. Huang X, Zhang P, Zou X, Xu Y, Zhu J, He J, Zhang B, Lu L, Zou H. Thinner Average Choroidal Thickness Is a Risk Factor for the Onset of Diabetic Retinopathy. Ophthalmic Res. 2020;63(3):259-270. doi: 10.1159/000504756. Epub 2020 Feb 5. PMID: 32023612.
- 14. Klefter ON, Vilsbøll T, Knop FK, Larsen M. Retinal vascular and structural dynamics during acute hyperglycaemia. Acta Ophthalmol. 2015 Dec;93(8):697-705. doi: 10.1111/aos.12797. Epub 2015 Jul 6. PMID: 26146858.
- 15. Saker S, Stewart EA, Browning AC, Allen CL, Amoaku WM. The effect of hyperglycaemia on permeability and the expression of junctional complex molecules in human retinal and choroidal endothelial cells. Exp Eye Res. 2014 Apr;121:161-7. doi: 10.1016/j.exer.2014.02.016. Epub 2014 Mar 2. PMID: 24594192.
- 16. Melancia D, Vicente A, Cunha JP, Abegão Pinto L, Ferreira J. Diabetic choroidopathy: a review of the current literature. Graefes Arch Clin Exp

- Ophthalmol. 2016 Aug;254(8):1453-1461. doi: 10.1007/s00417-016-3360-8. Epub 2016 Apr 25. PMID: 27109344.
- 17. Wang W, Liu S, Qiu Z, He M, Wang L, Li Y, Huang W. Choroidal Thickness in Diabetes and Diabetic Retinopathy: A Swept Source OCT Study. Invest Ophthalmol Vis Sci. 2020 Apr 9;61(4):29. doi: 10.1167/iovs.61.4.29. PMID: 32324858; PMCID: PMC7401852.
- 18. Fernández-Espinosa G, Orduna-Hospital E, Boned-Murillo A, Diaz-Barreda MD, Sanchez-Cano A, Sopeña-Pinilla M, Pinilla I. Choroidal and Retinal Thicknesses in Type 2 Diabetes with Moderate Diabetic Mellitus Measured by Retinopathy Swept Source OCT. Biomedicines. 2022 Sep 18;10(9):2314. doi: 10.3390/biomedicines10092314. PMID: 36140415; PMCID: PMC9496206.
- 19. Torabi H, Saberi Isfeedvajani M, Ramezani M, Daryabari SH. Choroidal Thickness and Hemoglobin A1c Levels in Patients with Type 2 Diabetes Mellitus. J Ophthalmic Vis Res. 2019 Jul 18;14(3):285-290. doi: 10.18502/jovr.v14i3.4784. PMID: 31660107; PMCID: PMC6815342.
- 20. Hsia WP, Tse SL, Chang CJ, Huang YL. Automatic Segmentation of Choroid Layer Using Deep Learning on Spectral Domain Optical Coherence Tomography. *Applied Sciences*. 2021; 11(12):5488. https://doi.org/10.3390/app11125488
- 21. Esmaeelpour M, Považay B, Hermann B, Hofer B, Kajic V, Hale SL, North RV, Drexler W, Sheen NJ. Mapping choroidal and retinal thickness variation in type 2 diabetes using threedimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci. 2011 15;52(8):5311-6. doi: 10.1167/iovs.10-6875. PMID: 21508108.

- 22. Querques G, Lattanzio R, Querques L, Del Turco C, Forte R, Pierro L, Souied EH, Bandello F. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci. 2012 Sep 7;53(10):6017-24. doi: 10.1167/iovs.12-9692. PMID: 22879414.
- 23. Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E. Macular and peripapillary choroidal thickness in diabetic patients. Retina. 2012 Oct;32(9):1781-90. doi: 10.1097/IAE.0b013e31825db73d. PMID: 22869022.
- 24. Lee HK, Lim JW, Shin MC. Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean J Ophthalmol. 2013 Dec;27(6):433-9. doi: 10.3341/kjo.2013.27.6.433. Epub 2013 Nov 15. PMID: 24311929; PMCID: PMC3849307.
- 25. Sudhalkar A, Chhablani JK, Venkata A, Raman R, Rao PS, Jonnadula GB. Choroidal thickness in diabetic patients of Indian ethnicity. Indian J Ophthalmol. 2015 Dec;63(12):912-6. doi: 10.4103/0301-4738.176024. PMID: 26862096; PMCID: PMC4784079.
- 26. Aksoy M, Simsek M, Apaydın M. Choroidal Vascularity Index in Patients with Type-1 Diabetes Mellitus without Diabetic Retinopathy. Curr Eye Res. 2021 Jun;46(6):865-870. doi: 10.1080/02713683.2020.1846755. Epub 2020 Nov 17. PMID: 33141614.
- 27. Yazgan S, Arpaci D, Celik HU, Dogan M, Isık I. Macular Choroidal Thickness May Be the Earliest Determiner to

- Detect the Onset of Diabetic Retinopathy **Patients** with in Prediabetes: Α Prospective and Comparative Study. Curr Eye Res. Jul;42(7):1039-1047. 2017 doi: 10.1080/02713683.2016.1264606. Epub 2017 Jan 25. PMID: 28121176.
- 28. Shiba C, Shiba T, Takahashi M, Matsumoto T, Hori Y. Relationship between glycosylated hemoglobin A1c and ocular circulation by laser speckle flowgraphy in patients with/without diabetes mellitus. Graefes Arch Clin Exp Ophthalmol. 2016 Sep;254(9):1801-9. doi: 10.1007/s00417-016-3437-4. Epub 2016 Jul 20. PMID: 27437934.
- 29. Kase S, Endo H, Yokoi M, Kotani M, Katsuta S, Takahashi M, Kase M. Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus. Eur J Ophthalmol. 2016 Mar-Apr;26(2):158-62. doi: 10.5301/ejo.5000676. Epub 2015 Sep 29. PMID: 26428217.
- 30. Țălu Ş, Nicoara SD. Malfunction of outer retinal barrier and choroid in the occurrence and progression of diabetic macular edema. World J Diabetes. 2021 Apr 15;12(4):437-452. doi: 10.4239/wjd.v12.i4.437. PMID: 33889289; PMCID: PMC8040083.
- 31. Abalem MF, Nazareth Santos Veloso H, Garcia R, Chen XD, Carricondo PC, Cabral Zacharias L, Preti RC. The Effect of Glycemia on Choroidal Thickness in Different Stages of Diabetic Retinopathy. Ophthalmic Res. 2020;63(5):474-482. doi: 10.1159/000506381. Epub 2020 Feb 10. PMID: 32036371.

Authors Contribution

Concept and design: Aneeqa Naz, Intisar Ul Haq Rana Data collection/assembly: Aneeqa Naz, Asfandyar Asghar Drafting: Tehmina Nazir, Naila Obaid Statistical Expertise: Ayesha Majeed Critical revision: Aneeqa Naz